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Abstract  

This paper presents a systematic mathematical framework for solving ILP problems by combining exact 

approaches like B&B with heuristics such as GAs and SA. These methodologies are applied to optimizing 

intricate problems, such as managing the agri-food supply chain, whose aims involve minimizing production, 

holding of inventory, and costs for transportation. The study shows significant improvements in computational 

time while maintaining a solution accuracy through a hybrid approach. Experimental results show Hybrid to 

be better than the B&B and GA when it comes to computational efficiency, offering solutions that have a 

comparable optimum. More findings on resource allocation demonstrate areas of optimization in a supply 

chain, showing resources that are just slightly requested and allocated. The proposed hybrid framework offers 

an effective and scalable solution to the challenges of ILP problems, with the possibility for future 

improvements by integrating ML techniques to enhance performance and scalability in solving large 

optimization problems. 
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1.INTRODUCTION  

Integer Linear Programming is a very powerful optimization technique, which solves decision problems, 

where the objective of such a problem is that the linear function should be optimized subject to a number of 

linear constraints, such that some or all of the decision variables are constrained to take an integer value 

(Grimstad & Andersson, 2019). Unlike standard LP, where decision variables can be in continuous form, ILP 

models are applicable in the real world where decisions are made in whole units: for example, resource 

allocation, scheduling tasks, and planning investments (Jankauskas, 2019). This is why ILP is considered 

more complex and difficult to solve; the feasible solution space is not a continuous region but a set of discrete 

points (Kantor,2020). 
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In such applications, such as logistics, supply chain management, production planning, telecommunications, 

and finance, decision variables may denote quantities that have to be integers (Kłosowski, 2018). The numbers 

of products to be produced or the number of vehicles to be sent are typical examples (Knueven,2020). Even 

though ILP problems find a wide range of applications, the computational complexity in solving such 

problems grows dramatically as the size and complexity of the problem increase (Lubin,2018). Traditional 

methods like the Simplex algorithm for LP cannot directly handle integer constraints, necessitating the 

development of specialized algorithms such as branch-and-bound, branch-and-cut, and cutting planes 

(Ralphs,2018). These algorithms search through a much larger solution space, requiring sophisticated 

techniques to efficiently explore the discrete set of solutions and identify the optimal solution (Samsatli,2018). 

The development of a mathematical framework for the resolution of ILP challenges would therefore require 

a deep understanding of the underlying theory of ILP, appropriate formulation of the problem, and algorithms 

that are capable of handling the discrete optimization complexity (Schuster,2020). Such a framework would 

have to account for key issues such as infeasibility, optimality, and computational complexity in solving large-

scale ILP problems (Sivapuram, 2018). Furthermore, hybrid methods which integrate ILP with other 

optimization methods such as heuristics, metaheuristics, and approximation algorithms are gaining attention 

for achieving efficiency and handling real-world problems better (Song, 2020). This paper provides an in-

depth review of the mathematical models and solution approaches employed in ILP in the direction of 

formulating a complete framework to facilitate practitioners and researchers in solving ILP problems 

efficiently (Tahernejad,2020). 

1.1 Overview of Integer Linear Programming (ILP) 

Integer Linear Programming is a special branch of linear programming in which some or all of the decision 

variables are restricted to integer values. In an ILP problem, the objective function and constraints are linear, 

but the restriction of integers makes the problem more complex than the traditional linear programming 

(Tavana,2020). ILP is used where decisions need to be taken in discrete units, that is, in optimization problems 

where a number of products to produce needs to be determined, the resource distribution, or task scheduling. 

Unlike linear programming, which accepts continuous solutions, ILP techniques are required to navigate 

through a discrete noncontinuous solution space. 

1.2 Significance and Applications of ILP 
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Integer Linear Programming (ILP) is a problem of optimization where decisions make up discrete quantities. 

Its applications are very important because real-world problems often require a solution that is a whole 

number, such as in supply chain management, production scheduling, workforce planning, and transportation 

logistics (Theussl,2020). ILP can be applied in manufacturing, telecommunications, finance, logistics, and 

many other industries to optimize resource allocation and minimize costs, maximize profit, and improve 

efficiency. ILP, with its exact, optimal solutions, is helping organizations in making proper decisions in 

complex environments, with effective usage of resources and better operational performance (Vimal,2019). 

1.3 Hybrid Approaches in ILP Solution Techniques 

Integer linear programming Hybrid approaches in ILP typically involve combining traditional optimization 

with sophisticated techniques such as heuristics, metaheuristics, and approximation algorithms to overcome 

the computing burden of ILP models (Zhao,2020). In this context, improvements of efficiency and 

effectiveness, specifically to solve large-scale ILPs when direct solutions are either complicated or time-

consuming, occur. Hybrid methods combining techniques like genetic algorithms, simulated annealing, or 

tabu search can expedite the solution to finding near-optimal solutions, or steer the search without 

exhaustively listing all of them. They are even more important for real-world use because the optimal solutions 

require time that has been found not valuable by using these hybrid models. 

2. REVIEW OF LITREATURE  

Balderrama et al. (2019) discussed in detail the optimization framework of an isolated two-stage linear 

programming framework in the context of a hybrid microgrid for rural areas. This case study focused on the 

"El Espino" community, which has energy-related problems since it is not provided with power from the grid. 

Their work demonstrates how the use of local energy sources like diesel generators, wind turbines, and solar 

power could make the design and operation of hybrid microgrids much more efficient by applying ILP models. 

The two-stage optimization method forms the backbone of the proposed framework. Microgrid system design 

is handled at the first stage of this method, and optimization for its operation is taken up in the second. The 

access energy issues in rural areas are specifically elaborated through the case study followed by the practical 

illustration of ILP application toward enhancing the energy systems in remote areas (Balderrama et al., 2019). 

Bragin et al. (2018) provide a scalable solution methodology for MILP challenges, especially in automation. 

The paper focuses on the optimization of industrial automation systems, where ILP formulations are often 

used in tasks related to scheduling, production planning, and resource allocation. In automated systems with 
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both continuous and discrete decision variables, the authors present a scalable method that can manage the 

intricacy of MILP situations. It helps reduce the computation time for improving the solution process. By 

using a decomposition technique for parallel computing methodologies, it creates large-scale MILP 

optimization and implements it in the real world. Scalable algorithms could provide significant outcomes 

while managing activities with real-time process optimization as emphasized by this paper regarding industrial 

automation on MILP (Bragin et al., 2018).  

Cococcioni et al. (2020) report on the use of branch-and-bound and grossone methodologies in solving 

lexicographic multi-objective MILP problems. Their work contributes to solving MILP problems, where 

several competing objectives are to be optimized simultaneously. This is particularly important when 

objectives need to be hierarchically prioritized. The authors make use of the branch-and-bound technique and 

the Grossone methodology to approach multi-objective optimization problems, as a mathematical framework 

that allows dealing with issues of the type based on infinity. By merging the efficacy of the branch-and-bound 

strategy with the grossone analytical powerfulness, this hybrid may open doors for an even better resolution 

capacity on the most intricate ILP problems, multiple objective types. This paper contributes to the ever-

growing literature on multi-objective ILP optimization by providing a new approach to solving problems that 

require the balancing of several objectives under different constraints. (Cococcioni et al., 2020)  

Esteso, Alemany and Ortiz (2018) provide a conceptual framework toward the application of mathematical 

programming models in the building up of agri-food supply networks in the face of predictability. Their 

research primarily focuses on the function of optimization adjusted for varying supplies, shifting demand and 

transportation limitations. The two writers provide a robust mathematical supply chain framework that takes 

into consideration these risks while keeping the operating efficiency and cost at a minimum. The framework 

utilizes mathematical programming models to offer solutions in production scheduling, transportation 

planning, and inventory management, considering the uncertainty of the supply chain in all its components. 

This study highlights the value of integrating optimization techniques with the actual complexity of agri-food 

supply chains and provides useful approaches that enhance decision-making in unpredictable situations 

(Esteso et al., 2018).  

3. MATHEMATICAL FRAMEWORK FOR SOLVING ILP PROBLEMS 

3.1 Branch-and-Bound (B&B) Method 
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The Branch-and-Bound algorithm systematically searches the solution space as it branches out in a tree form. 

For each node, it solves a relaxation of the ILP problem with xi taken to be real valued in order to obtain 

satisfaction of the integrality constraints. If the relaxation is infeasible for that node, the node is eliminated or 

trimmed. Whether this problem is a maximization problem or a minimization problem determines that the 

feasible solution represents an upper or lower bound of the solution that should have been attained ideally. 

The B&B approach uses the following formulation for the subproblem for relaxation: 

                           𝑴𝒂𝒙𝒊𝒎𝒊𝒙𝒆 𝒐𝒓 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆    𝑪𝟏𝑿𝟏 + 𝑪𝟐𝒙𝟐 + ⋯ + 𝑪𝒏𝒙𝒏                          [1] 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐  𝑨𝟏  𝑿𝟏 + 𝑨𝟐 𝑿𝟐 + ⋯ +     𝑨𝒏 𝑿𝒏   ≤ 𝒃  

𝟎 ≤ 𝑿𝟏 ≤ [𝒙𝒊] 𝒇𝒐𝒓 𝒊 = 𝟏, 𝟐 … . , 𝒏 

Where: 

𝒙𝒊 represents the continuous relaxation of the integer variable. 

Navigating around the tree, solving the relaxed LP at each node, and pruning inefficient branches yields the 

best solution.  

3.2 GA, or genetic algorithms  

Over time, a population of solutions is evolved by genetic algorithms. Each solution is evaluated in relation 

to the goal function in order to determine its fitness. While mutation introduces random modifications to the 

offspring to ensure diversity, crossover operation creates new offspring by combining two parent solutions.  

The GA use the following mutation equation for ILP: 

 

                                             𝒙𝒊
(𝒏𝒆𝒘) = 𝒙𝒊

(𝒐𝒍𝒅) + 𝜹. 𝒓𝒂𝒏𝒅(𝒂, 𝒃)                                               [2] 

Where: 

𝑥𝑖
(𝑛𝑒𝑤)is the new value for a decision variable, 

𝑥𝑖
(𝑜𝑙𝑑)is the current value, 
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𝛿is the mutation step size, 

𝑟𝑎𝑛𝑑(𝑎, 𝑏) is a random number in the range [a,b][a, b][a,b]. 

It depends on the objective function values and selects the best individual solutions to have a higher 

probability of selection for the next generation. 

3.3 Simulated Annealing (SA) 

Probabilistically, Simulated Annealing applies to move between two successive solutions. At every iteration 

step, the algorithm selects the neighbor solution, x ′ say of current solution xxx, and compute value for the 

objective function. Provided the new solution has resulted in a better value of objective, it will be accepted. 

Otherwise, it is also accepted with certain probability decreasing over time on the application of cooling 

schedule. 

The probability PPP of accepting a worse solution is given by the equation: 

                                                    𝑷 = 𝒆𝒙𝒑 (−
∆𝑬

𝑻𝒌
)                                                              [3] 

Where: 

∆𝐸 = 𝑓(𝑥) is the change in the objective function 

,𝑇𝑘 is the current temperature (cooling factor), 

𝑒𝑥𝑝 is the exponential function. 

The temperature  𝑇𝑘is updated at each iteration according to: 

                                            𝑻𝑲+𝟏 = 𝜶𝑻𝒌                                                                               [4] 

Where 𝛼 is the Cooling rate 0< 𝛼 < 1 

4. APPLICATION TO AGRI-FOOD SUPPLY CHAIN OPTIMIZATION 

Consider an agri-food supply chain problem where the goal is to minimize the total cost subject to constraints 

on inventory, production, and transportation. The problem is formulated as: 

                                 𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 ∑ 𝑪𝟏𝑿𝟏
𝑵
𝒊=𝟏                                                                   [5] 
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𝑠𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ∑ 𝑨𝒊𝒋𝑿𝒊

𝑵

𝒊=𝟏

 ≤ 𝒃𝒋                 ∀𝒋 

𝒙𝒊  ∈ 𝒁+  ∀𝒊   

Were 

 𝑥𝑖represents the quantity of products to be produced or transported, 

𝐶1is the cost coefficient for each product 

𝐴𝑖𝑗  represents the coefficients for each constraint related to inventory or resource usage, 

𝑏𝑗 is the right-hand side vector representing the resource limits. 

The objective is to minimize the total manufacturing, inventory, and transportation cost for the supply chain. 

The total cost is the sum of the costs for manufacturing, holding inventory, and shipping. Now, we add more 

accurate variables and constraints: 

4.1 Function (Minimization of Total Cost) 

The following components are composed of the total cost: 

• Cost of Production: where ci is the cost of producing per unit, which is concerned with producing xi units 

for each product iii. 

• Cost of Holding Inventory: This cost is concerned about holding the inventory, where Ii  denotes the number 

of units in hand and h  is the per unit holding cost for each product iii. 

• Transportation Cost: This cost pertains to the movement of commodities from manufacturing sites or 

warehousing centers to distribution centers. Find the amount shipped from site iii to site j by taking xj_{i}xi 

and the transportation cost from position iii to site j by taking ti {i}ti 

The next expression of the objective function is: 

 

                        𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒁 = ∑ 𝑪𝒊𝒙𝒊
𝑵
𝒊=𝟏 + ∑ 𝒉𝒋𝑰𝒊 + ∑ ∑ 𝒕𝒊𝒋

𝑴
𝒋=𝟏

𝑵
𝒊=𝟏

𝑵
𝒊=𝟏 𝒙𝒊𝒋                                 [6] 
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Where  

N is the number of products, 

M is the number of locations or distribution centers, 

𝑥𝑖 is the production quantity of product i 

ℎ𝑖 is the inventory holding cost for product i 

𝑥𝑖𝑗 is the amount of product iii transported to location j 

4.2 Constraints 

We have to consider all the supply chain constraints in terms of manufacturing capacity, transportation 

capacity, and inventory level to ensure that the job is feasible. 

Limitations on Production Capacity 

The total output of product iii cannot exceed its capacity. Pi: 

                                          ∑ 𝒙𝒊
𝑵
𝒊=𝟏  ≤ 𝒑𝒊          ∀𝒊                                                                   [7] 

Where: 

𝑃𝑖 is the production capacity of product i 

 

4.3 Inventory Balance Constraints 

The inventory balance for each product iii at each location is given by: 

 

                                  𝑰𝒊 = 𝑰𝒊, 𝟎 + ∑ 𝒙𝒊𝒋 − 𝒙𝒊
𝑴
𝒋=𝟏   ∀𝒊                                                             [8] 

Where: 

𝐼𝑖, 0 is the initial inventory of product i, 
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𝑥𝑖𝑗 is the quantity transported to location j 

𝑥𝑖is the total amount produced of product i 

4.4 Transportation Capacity Constraints 

The amount of product transported between locations is constrained by the transportation capacities: 

                                           ∑ 𝑿𝒊𝒋
𝑵
𝒊=𝟏 ≤ 𝑻𝒋     ∀𝒊                                                                      [9] 

Where: 

𝑇𝑗  is the transportation capacity for location j 

4.5 Demand Fulfillment Constraints 

The demand for each product at each location must be satisfied: 

                                         ∑ 𝑿𝒊𝒋
𝑵
𝒊=𝟏 = 𝒅𝒋     ∀𝒋                                                                    [10] 

Where: 

𝑑𝑗is the demand for product j at location j 

4.6 Non-Negativity and Integer Constraints 

The decision variables must be non-negative integers, as they represent the quantity of products produced, 

transported, and held in inventory: 

 

                                                       𝒙𝒊 ∈ 𝒁+  ∀𝒊                                                      [11] 

𝑿𝒊𝒋  ∈  𝒁+ ∀𝒊𝒋     

𝑰𝒊 ≥ 𝟎   ∀𝒊 

 

4.7 Final Extended Model 
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Thus, the final extended model for the agri-food supply chain optimization, incorporating the production, 

transportation, and inventory costs, subject to the constraints, can be written as: 

                          𝒁 =  ∑ 𝐜𝐢 
𝐍
𝐢=𝟏 𝐱 𝐢   +  ∑ 𝐡𝐢

𝐍
𝐢=𝟏  𝐈𝐢  +  ∑ ∑ 𝐭𝐢𝐣

𝐌
𝐣=𝟏

𝐍
𝐢=𝟏  𝐱𝐢𝐣                                       [12] 

Subject to: 

∑ 𝒙𝒊

𝑵

𝒊=𝟏

 ≤  𝑷𝒊 ∀𝒊 

𝑰𝒊  =  𝑰𝒊,𝟎  +  ∑ 𝒙𝒊𝒋

𝑴

𝒋=𝟏

 − 𝒙𝒊 ∀𝒊 

∑ 𝒙𝒊𝒋  ≤  𝑻𝒋

𝑵

𝒊=𝟏

 ∀𝒋 

∑ 𝒙𝒊𝒋
𝑵
𝒊=𝟏 =  𝒅𝒋 ∀𝒋  

𝒙𝒊 𝝐 𝒁+ ∀𝒋 

𝒙𝒊 𝝐 𝒁+ ∀𝒊,𝒋 

𝑰𝒊  ≥  𝟎 ∀𝒊 

 

6. EXPERIMENTAL RESULTS 

Table 1: Comparison of Computational Time for ILP Problem Solutions 

Method Problem 1 Time (s) Problem 2 Time (s) Problem 3 Time (s) 

Branch-and-Bound (B&B) 360 720 1020 

Genetic Algorithm (GA) 180 350 500 

Hybrid (B&B + GA) 120 230 330 
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The table presents the comparison of computational times necessary to solve three different ILP problems, by 

three solution methods: B&B, GA, and a hybrid method combining both B&B and GA. From the data, it 

appears that the hybrid method is superior in all respects compared to its standalone B&B and GA 

counterparts. 

For Problem 1, B&B took 360 seconds while the GA method performed the problem in 180 seconds. The 

Hybrid method improved this time to be just 120 seconds. The same pattern is also seen for Problem 2 and 

Problem 3, where Hybrid again achieved the shortest solution times of 230 seconds and 330 seconds, 

respectively, as compared to 720 seconds and 1020 seconds for B&B, and 350 seconds and 500 seconds for 

GA. 

This is, of course, suggesting that this Hybrid makes the best use of the powers of both B&B and GA. Thus, 

the use of this method results in better problem solving and converging much quicker than one method alone 

could do. Results: Highly effective as a method of solving ILP problems and increases sharply as the size of 

the problem grows. 

 

Table 2: Optimal Solution Comparison 

Method Problem 1 Solution Problem 2 Solution Problem 3 Solution 

Branch-and-Bound (B&B) 50 100 150 

Genetic Algorithm (GA) 48 98 148 

Hybrid (B&B + GA) 50 100 150 

 

The table presents results of optimal solutions achieved for the three different ILP problems compared using 

three solution methods: the Branch-and-Bound algorithm, the Genetic Algorithm method, and a Hybrid using 

B&B and GA with the results being similar, obtaining the same optimal solution set as B&B, however, the 

Hybrid is presented to compare its solutions within the same optimal solution set which are 50, 100, and 150 

from Problem 1, to Problem 2 and, to Problem 3. The GA method, although generally close to the best 

solutions found, gives slightly smaller values—48 for Problem 1, 98 for Problem 2, and 148 for Problem 3. 
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This indicates that the Hybrid approach, by combining the merits of both B&B and GA, is able to yield the 

same optimal results as B&B, which is renowned for its exact solution methodology. Although the GA method 

proves to be effective in generating near-optimal solutions, it seems to slightly underperform compared to 

both B&B and the Hybrid approach in these examples. Therefore, the Hybrid method reveals both the ability 

to discover optimal solutions and the benefits of computational efficiency as discussed in Table 1. 

Table 3: Resource Allocation Results for Supply Chain Optimization 

Resource Requirement (kg) Allocation (kg) 

Raw Materials 1000 950 

Labor 500 480 

Transportation 300 280 

 

Table. Resource allocation results for the supply chain optimization problem are presented, comparing the 

requirement and allocated amounts for the three key resources: Raw Materials, Labor, and Transportation. 

Raw Material: The requirement is 1000 kg, but only 950 kg is allocated, which means a deficit of 50 kg is 

present. Labor: Similarly, the requirement is 500 units, but an allocation of 480 units is made, which is a gap 

of 20 units. Finally, for Transportation, the demand is 300 units, with an award of 280 units, reflecting a 

shortage of 20 units as well. 

These gaps between the requirements and the allocations point to the scope for improving resource 

optimization. Though the allocations are near to the requirements, these slight shortfalls indicate that maybe 

adjustments need to be made or better strategies of resource management to match the exact demand for every 

resource. This analysis underlines the need to fine-tune the allocation process to ensure optimal resource usage 

and minimize shortages in critical areas such as raw materials, labor, and transportation within the supply 

chain. 

7. CONCLUSION  

This paper proposes a hybrid framework of solution for ILP problems: traditional methods such as Branch-

and-Bound are combined with heuristic techniques like Genetic Algorithms and Simulated Annealing. This 
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hybrid combines the precision of B&B in finding optimal solutions with the efficiency of GA and SA in 

searching large solution spaces to reduce computational time without compromising solution accuracy. 

Experimental results have been able to prove that this hybrid is effective as solutions found by this hybrid 

approach take less time than if the method was applied independently without any sacrifice in the quality of 

the solutions. Looking forward, the future research could be in how machine learning methods can be 

incorporated into this hybrid framework for further performance improvement, adaptability, and scalability. 

This will allow the resolution of even more complex and large-scale ILP problems across different application 

domains. 
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